Circular Gravitational Fields 1

The principles demonstrated for the orthogonal gravitational field in the article Special Relativity
and Gravity can also be applied to circular gravitational fields.

CYLINDRICAL GRAVITATIONAL FIELDS

One type of circular gravitational field would be the cylindrically shaped field surrounding the
pole mass that generates the DEOGF in the x-Q plane shown in the article Special Relativity and
Gravity, Figure 1. Referring to Figure 1, this cylindrical gravitational field would exist in a
plane perpendicular to the x-axis of the pole. See Figure 5.
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Reference frames A and B are cylindrical surfaces at constant radial distances ra and rs from the
pole mass. This example is just a different view the DEOGF of Figure 1, so many characteristics
of this circular gravitational field have already been calculated. The Acceleration Law for this
circular gravitational geometry is a modification of (4) in which the coordinate h is the distance
above the baseline radius d = rp where the gravitational acceleration is go.
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gh= (16)

One item that has not been previously calculated is the relationship of forces in the
circumferential direction between reference frames. In order to make this calculation, reference
frames A and B can be constructed to be fixed to the infinite pole mass with supports that prevent
movement of these surfaces.
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Circular Gravitational Fields 2

Now assume a board spans the distance between frames A and B. The board passes through a
small hole in the infinite pole mass to access the mirror image experiment on the opposite side.
As two frame B observers push on the board in frame B, the board will push on springs in frame
A. The observers pushing on the board each apply force Fj and the observers holding the springs
in frame A each feel force Fa. The springs are compressed and clamped in the compressed
condition. Each spring contains energy E when clamped in the compressed condition in frame A.
Each spring is lowered to frame B by observer B (with a pole) where it still contains energy E.
The work obtained by frame B as a spring is lowered is W ag.

Was = (5 )gnch a”

The energy contained in the spring is £ = %F 1dy, with dy being the small displacement of the
board in the circumferential direction in Frame A. The energy expended initially by observer B

1S %F sdy. With the spring energy moved down to frame B, the Law of Conservation of Energy
gives:

%ngy = %FAdy+ Wipg=E+Wup

W s gsh

7:(1+T)=(”T) (18)

This is the same result for the circumferential direction as (14a) is for the x-axis direction.

SPHERICAL GRAVITATIONAL FIFLDS

A spherical gravitational field surrounds a point mass or approximates the shape of a

gravitational field surrounding a spherical object such as a planet. The governing relationship of
this shape of field will be given by (1).

The creation of an Acceleration Law for a spherical gravitational field will follow the same logic
as for the gravitational fields of other shapes presented previously. First, a calculation must be
made to find the pole work W sz obtained when a mass m undergoes a change in position from a
reference frame A at radius r, to a reference frame B at radius rp. The large mass M is providing
the gravitational field and the smaller mass m is changing radial position within that field.

o= g4 G

W an = GMm(75 = 317) (19)

If the smaller mass is actually an amount of energy m = E/c?:

W M
=G -2 20)
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Circular Gravitational Fields 3

Equations (19) and (20) will be used in a new experiment similar to the one shown in Figure 5.

only now the infinite pole mass will be replaced by a planet. See Figure 6.
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The board has a hole in it that passes around the planet. The springs will again be compressed so
that each contains energy E. Each spring will be clamped in position and lowered to reference
frame B. The energy obtained when a spring is lowered is Wag as given by (19). When the

spring has relocated to frame B, its potential energy in frame B is still E.

The energy contained in the spring is £ = %F 4dy. The energy expended initially by observer B 1s
%F sdy. With the spring energy moved down to frame B, the Law of Conservation of Energy

gives:

%ngy = ’?_I‘FACZ’_V+ WAB =F+ W45

=] ¢ WAB
Fp GM 1
F_,T 1+ (7’ B F—A)
This solution for forces can also be expressed as:
Fq=mgac Fg= Gﬂf""" =mggcC
B
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Gh—Ly=1+222(12) 22)

Equation (22) can be compared to (16) to see how the structure of the Acceleration Law changes
when the gravitational field shape goes from cylindrical to spherical. Equation (22) can also be
compared to (21) from The Acceleration Law to see how gravitational fields from point masses
differ from acceleration patterns of dynamic experiments.

The expression for time rates in the two reference frames is found using the Law of Conservation
of Momentum. The experiment of Figure 6 is modified as shown in Figure 7.

le—Fa

~lo

Board

Spherical
? Planet

Figure 7

Reference frames A and B will be constructed to be similar to railroad tracks. These tracks hold
identical cars in fixed radial positions. The only movement of the cars is in the circumferential
direction along the tracks. The cars also resist motion in any other direction regardless of the
force or torque applied to them.

Now assume a board is fixed to the car in frame A and spans distance h between reference
frames. As the frame B observers standing on their cars push on the board, they will each apply a
force Fy in the directions shown. They apply forces to their cars in the opposite direction. The
board will push on the cars in frame A with a force Fa as given by (21). If clocks in both frames
read zero as the forces are applied, then the clock in frame A will read ts and the clock in frame
B will read t; when the force application ends. The change in momentums of the cars in frame B
and frame A must be equal.

Fatqa=Fptp
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t GM 1 1
=1+ Gg 7 (23)

Equation (23) gives the relative clock readings (time rates) for frame A and frame B.

COMPARISON TO SCHWARZSCHILD AND EXPERIMENTAL EVIDENCE

The Schwarzschild solution to the General Theory of Relativity gives the following equation for
time dilation in a spherical, non rotating gravitational field.

ty=t 1 - 2EH (24)

r - radius from center of mass M
t, - local clock reading between two events at radius r
[ - clock reading between same two events seen from r = oo

Equation (24) is considered to be confirmed by experimental evidence gathered over many years.
Equations (23) and (24) appear to be significantly different. However, a comparison of
calculated values for these two equations will be made. This test case will use commonly
accepted values for gravitational time dilation for Global Positioning System satellites orbiting
the earth. The time accuracy required of these satellites makes gravitational time dilation

significant for accurate position coordinates to be achieved. The Schwarzschild solution (24)
gives:

GM -3.9912 x 10" m3/sec?

rg — 6,360,000 m (radius of earth’s surface)

r4 —26,360,000 m (radius of satelite orbit)
¢—300,000,000 m/s

tearmn = 86400 seconds/day

tsatetite = 86400.0000457091 seconds/day {250

The same values applied to (23) give:

{satetite = 86400.0000457091 seconds/day (26)

The accepted value of gravitational time dilation for GPS satellites is 45.7 microseconds per day.
This number may change slightly depending on the values of inputs used or if the assumption
that the earth is not exactly a sphere is considered. Repeating this comparison of (23) and (24)
for various other values of inputs shows that the two equations are in agreement for every
experimental test condition used to verify time dilation predicted by the General Theory of
Relativity. The only area that the two equations give separate results is when values of s
approach the Schwarzschild radius, rz = 2GM/c?. At this radius, (24) gives a singularity and (23)
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does not. Equation (23) gives a singularity at r3 = 0 (and mass M is assumed to be concentrated
at that one specific point).

Other experimental evidence supporting the effect of gravity on time per the General Theory,
such as gravitational red shifting of light frequencies from dense stars, also supports this new
theory, which will be referred to as the Special Theory of Gravity.

SUMMARY

The comparison of (23) and (24) is evidence that the acceleration and gravitational theory based
on the Special Theory of Relativity is valid. Using the Special Theory of Relativity for
gravitational fields gives some additional information that the General Theory does not -
specifically, more information on forces is included with the Special Theory of Gravitation.
Other information, such as local applications of momentum and energy laws, is also easier to
compute. Although the General Theory of Relativity may be considered the more sophisticated
theory, the Special Theory of Gravity will have advantages in analyzing local experiments where
observer interaction between reference frames is required. It is also easier to use, especially
when new shapes of gravitational field are being investigated. The Special Theory of Gravity
also relates directly to dynamic experiments and can present exact parallels or differences
between gravitational and dynamic experiments.
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