Special Relativity and Gravity 1 Revision 3

A simple and accurate formula for the force of gravity is Newton’s Gravitation Law.
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(1)

F - Gravitational force between two masses

G - Gravitational Constant

m; m, - the two masses experiencing the force F
R - the distance between the two masses

THE UNIFORM LINEAR GRAVITATIONAL FIELD

The gravitational field of (1) is approximately spherically shaped around each of the
masses. However, it will be useful to examine experiments using a gravitational field
which is described by a straight line orthogonal coordinate system. This type of field is
created using (1) and specifying that one of the masses is a pole of infinite length. The
experiment 1s shown in Figure 1.

The gravitational field associated with this infinite pole is found by first specifying that
mass m, is an infinitesimal mass dm within the pole. The individual gravitational fields
of all the dm masses will then be added up to give the total gravitational field of the pole.
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Figure 1. Infinitely long pole mass.
The pole has a density of ¢ and will have a resulting infinitesimal mass dm =0 dx .

Infinitesimal mass dm is located a distance x from mass m. Mass m is located a distance
Q above the pole. Using (1), the resulting gravitational force dF is:
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~ Gmodx

dF = 2 2
Q + X ('2)

When viewed in the Q-x plane, the force dF can be seen to contribute to the force df (in
the Q direction) between mass m and the pole. This 1s shown 1n Figure 2.
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Figure 2. Q-x plane view of the forces.

The resulting equation for the force between mass m and the pole is:

p
df =dF sin¢ =dF O J

L\‘\/Qz_[_xz
f=ZGm§Qm i =
Q(QE-I—XE)
f - 2Gm o _ 2Gm o
Q z+d (3)

If a constant ¢ is defined to be the gravitational acceleration divided by ¢, a new quantity
of acceleration in the z direction can be defined as:

&
d for any z

¢c d forthecasez=0
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Note that ¢ = 0.733x 10% kg/m will make 2Gole=1 Equation (4) is a gravitational
acceleration that is in the same form as the dynamic acceleration (21) in the article The
Acceleration Law. The distance Q is divided into two parts, z and d, defined in Figure 2.

At distance d, the acceleration ©° is equivalent to 5 From (21). At distance z above d,

the acceleration 8+ is equivalent to acceleration #4 from (21) with L =z.

This special gravitational field will be referred to as a Dynamic Equivalent Orthogonal
Gravitational Field (DEOGF). It is orthogonal because the force of gravity exists
uniformly along the x-axis in the z direction. All experiments in the x-z plane simulate a
dynamic acceleration in the z direction.

FORCE TRANSFORMATION IN A GRAVITATIONAL FIELD

Consider a thought experiment where an object B has mass m and is stationary in
reference frame B at a distance d above the pole mass. An identical object A is stationary
in reference frame A at a distance z above frame B. Since the gravitational acceleration
of objects A and B is different, then the gravitational force felt by someone holding the
objects would be different. These forces are:

F,B = MgRC for object B FA = Mg & for object A

F
FA:FB(g—A] BZ
gg 1+gB

¢ ()

Now assume that object A falls from frame A to frame B. The Kinetic energy generated
by this fall is KE. To find KE, note that object A becomes an inertial reference frame as
soon as it starts to fall. Object B accelerates towards object A with constant acceleration

g5 . If the time interval that object A sees for the fall is ‘4", then:

z= i[(“— (g,0,Y)" - 1]
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The velocity that object A has relative to object B at the moment of impact 1s B and :

B, = gply :
\/1*{“(83%) (7)

The kinetic energy of object A as it impacts frame B 1s:

f

KE = —2¢  _ me?
J1- B2
1 s PRB
NI c
KEchng (8)

Now lets assume object A does not fall from frame A. Instead, it 1s lowered by observer
B with a pole to frame B. Observer B does not know what force he will feel on his end of
the pole. He therefore assumes this force will vary with z and calls 1t F(z). The work

gained by observer B during this task will be Was .
0
W = jF (z)dz:
z (Ya)
Wap = Fpe? (9b)

The value of F(z) would be applied for an incremental distance dz to give the expression
for work in (9a). Another way to calculate the work would be to take the average force

during the task Fae and multiply it by z, as is shown in (9b). But, knowing KE =W,p

g1ves:

Fave = mcgﬁ = FB (] 0)

Equation (10) is true no matter what the value of z 1s. For any value of z, observer B

Iy

always feels average force “ # on his end of the pole. Therefore, observer B always feels
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constant force £ on his end of the pole. This force will be called F g , and object A

P4 on the opposite end of the pole.

Fm-ﬁgfgiJ—fg[1+ng]_};
g 4 ¢

exerts force

(11)

THE FORCE OF GRAVITY ON ENERGY

Consider an experiment where a mass is moved from frame A to frame B using a pole.

F5 . This movement happens slowly so that no

W,

The weight of the mass in frame B is

dynamic effects are present. The work received from this experiment 1s ™ 48 and:

Wi = sz (12)

In frame B, after the mass has arrived, some of the material of the mass is converted into
heat energy H (using nuclear fission) and held inside of the mass with insulation. Then,
as a separate activity, energy H could be extracted from the mass and combined with

Wais | The total energy gained from the experiment 1s W +H

Now the experiment is repeated, but this time the identical material conversion to heat
energy H 1s made in frame A. This energy is again held inside of the mass. The mass 1s
again moved from frame A to frame B. At the frame B location, the energy H 1s extracted
from the mass and added to the energy obtained from the movement of the mass from

frame A to frame B. The total energy must again be Was + H from the Law of
Conservation of Energy. The beginning and end states of the experiment are the same, so

the total energy received from the experiment must be the same. If Wb is the same for

both experiments, then the force of gravity on the energy H must be the same as the force
of gravity on the material that was converted into H. Similar experiments could be

performed on any other type of energy with the same result.

HORIZONTAL FORCE IN A GRAVITATIONAL FIELD

In Figure 3, observer B pushes on a long board with a hole in it so that it passes around
the pole mass. The same board is part of an identical experiment on the opposite side of
the pole mass (not shown), which is positioned to eliminate any rotational movement or

£y

torque effects in the experiment. Horizontal force is applied by observer B and

horizontal force £4 is felt by observer A in frame A. The spring in frame A is
compressed, clamped in the compressed position and lowered to frame B by observer B
using a pole.
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Figure 3. Horizontal force experiment.

The spring has a force-displacement relationship of F' = kdx  where k is the spring
constant and dx is the displacement. When the board compresses the spring, a potential
energy E is stored in the spring while in frame A. When the spring has been moved to
frame B, the same energy and spring force must be present there. The work gained by
lowering the spring down to frame B 1s:

E
W s = [7]5’30[‘

‘ (13)
1
_ Fdx
The energy initially expended by observer B on the board is 2 and the energy
2Lk |
stored in the spring is 2 . When the spring is at frame B, the Law of
Conservation of Energy gives:
1 1
EFde: E—[_WAB :EFAdx'—I-WAB
fﬁ_:]_[_‘gBL :1+WAB
4 ¢ 5 (14)
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E (14b)

In (14a), the relationship for horizontal force is seen to be the same as the relation for
force in the direction of the gravity field (5). Equation (14b) shows that the Acceleration
Law (4) can also be thought of as a function of the energies in the experiment.

TIME IN A GRAVITATIONAL FIELD

The transformation for time flow rates at different gravitational potentials is found from
the experiment shown in Figure 4, where a board once again moves horizontally over the

pole mass. However, this time the frame B observer applies a force F5 to the board and
simultaneously to a second mass in frame B going in the opposite direction. The mass in
frame A will acquire a velocity to the right and the mass in frame B will acquired a
velocity to the left. The experiment starts with all clocks reading zero and the total
system momentum being zero.
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Figure 4. Time experiment.

Observer B applies the forces until clock reading ‘s and the frame A observer sees the

force at his location applied until clock reading ‘4. The momentum produced in frame B
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must be equal in magnitude (and opposite in direction) to the momentum produced in

frame A.
FAIA = Fyly
la _ 14 8s%
fﬂ C (15)

Equation (15) can be compared to the equation (31) or (34a) from the article The
Acceleration Law :

Lip ¢ (31 - The Acceleration LW)

The clock readings at different levels in a gravitational field vary in the same way as the
clock readings in an equivalent dynamic experiment. Note that “length contraction™ 1s
not assumed to occur in the direction of gravity or in the direction perpendicular to
oravity. There are two reasons for doing this. First, the best assumption in any
experiment is the simplest one and no length contraction is the simplest possible
assumption for length behavior in these experiments.

Second, in the article The Acceleration Law, it was shown that an object of length L
undergoing acceleration (as described by (21) of that article) does not see length
contraction in the accelerating frame of reference. Length contraction has therefore been
established to be absent when acceleration is involved and is only present when there 1s a
relative velocity between reference frames. This dynamic precedent is assumed to apply
to the case of gravitational acceleration too. Since (4) and (21: The Acceleration Law) are
similar, the article Acceleration Dynamics applies equally to a gravitational acceleration
and a dynamic acceleration.

SUMMARY

This article has presented thought experiments that result in transformations for length,
force and time in a DEOGF. These transformations can be expressed as functions of the
gravitational potential energy difference between reference frames or as functions of a
local gravitational acceleration. The DEOGF is exactly equivalent to a dynamic
acceleration. This is an exact demonstration of Einstein’s Equivalence Principle, a
thought experiment influencing the development of the General Theory of Relativity.
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