Special Relativity and Magnets 1

A simple formula for the force between magnetic charges is Gilbert’s Model:

F _ Uq lqu
< (1)

F - Magnetic force between two “charges”

U - A Permeability Constant = # /A

H . permeability
q1.qz - the two charges experiencing the force F
R - the distance between the two charges

The Uniform Linear Magnetic Field

The magnetic field of (1) is approximately spherically shaped around each of the charges.
However, it will be useful to examine experiments using a magnetic field which is
described by a straight line orthogonal coordinate system. This type of field is created
using (1) and specifying that one of the charges is distributed along a rod of intinite
length. This configuration is shown in Figure 1.
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Figure 1. Infinitely long rod magnet creating a uniform linear magnetic field.

The magnets in Figure 1 have the charge distributions (poles) designated by the usual
letters “n” and “s”, with all the s charges on the top of the rod (near the smaller magnet)
and all the n charges lined up along the bottom of the rod. The smaller magnet 1s
arranged so that it is being attracted by the rod magnet, though the analysis could also
apply for the opposite arrangement where the two magnets repel each other.

This arrangement can be analyzed using (1) for each of the four pairs of charge
interactions (the n and s charges on the smaller magnet each being affected by the n and s
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Special Relativity and Magnets 2

charges on the rod magnet). To begin, just one case of these four will be derived and the
other three cases are just variations of the first. The case to be examined 1s the n charge
on the smaller magnet and the s charges on the rod magnet.

The magnetic field associated with this infinite rod is found by first specifying that charge
s is an infinitesimal charge ds within the rod. The individual magnetic fields of all the ds

charges will then be added up to give the total magnetic field of the rod.

The rod charge distribution is a uniform density of 0 and will have a resulting
infinitesimal charge ds = ¢ dx. Infinitesimal charge ds is located a distance x from the n

charge of the smaller magnet. Charge n is located a distance Q above the rod. Using (1),
the resulting magnetic force dF is:

- Un odsx

dF = — :
Q < i 7 (2)

When viewed in the Q-x plane, the force dF can be seen to contribute to the force df (1n
the Q direction) between charge n and the rod. This is shown in Figure 2.
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Figure 2. Q-x plane view of the forces.

The resulting equation for the force between charge n and the pole is:

;
df =dF sm ¢ =dF 2

K\/QE =
j- - 2UH5QT(QE _:izg 3/2
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_2Und 2Uno
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The distance Q is divided into two parts, z and d, defined in Figure 2. If a constant j 1s
defined to be the magnetic acceleration divided by c, then the acceleration in the z

direction can be defined as:

yA
d for any z

¢ d  forthecasez=0

Jo
1+£

. (4)

The value of j can also be positive or negative, with positive indicating an attractive force
and negative indicating a repellant force. Equation (4) is a magnetic acceleration that 1s
in the same form as the dynamic acceleration (21) in the article The Acceleration Law and
the gravitational acceleration (4) in the article Special Relativity and Gravity.

7. =

This special magnetic field will be referred to as a Dynamically Equivalent Orthogonal
Magnetic Field (DEOMF). It is orthogonal because the magnetic force exists uniformly

along the x-axis in the z direction.

Further Definition of the Experimental System
The configuration of Figure 1 can be altered so that experiments can be simplified. The

magnetic dipole can be made approximately equal to the simpler gravitational field
structure. See Figure 3.

In Figure 3, the infinitely long rod magnet has been replaced by and infinitely long plate
magnet. In this configuration, the n and s charges are separated by a greater distance d3
than they were on the rod in Figure 1. A second plate magnet is offset a distance d4 from
the first plate magnet. Also, its charges are reversed compared to the first plate magnet.

Two smaller magnets are lined up over top of the plate magnets in an arrangement that
has both smaller magnets being attracted to both plate magnets. The total charges on the
plate magnets are assumed much stronger than the charges on the smaller magnets.
Distances d1 and d2 are responsible for the magnet force to the plate magnets. If d1 and
d2 are significantly smaller than d3 and d4, then the experiment approximates a single
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Special Relativity and Magnets 4

smaller magnetic charge being attracted to a single plate (rod) charge distribution. A
single magnetic charge calculation can reasonably describe the character of the magnetic
field, much as a single calculation describes a gravity field.

The smaller magnets are shown lined up over top of one another, but this is just for clarity
in the figure. There can be significant distance (x direction) between them, so that they
don’t interfere with each other. This may not be necessary if their magnetic charges are
weak in comparison to the plate charges, in the same way that objects attracted to the
earth are not assumed to gravitationally attract each other in a gravitational experiment.

This configuration will make it easier to understand the configuration of other
experiments in this article.
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Figure 3. Alternate experimental configuration.

Force Transformation in a Magnetic Field

Consider a thought experiment where an object B has charge n and is stationary in
reference frame B at a distance d above the rod magnet. An identical object A 1s
stationary in reference frame A at a distance z above frame B. These two magnetic

objects are far enough apart horizontally (in the x direction) so that they have an
insignificant effect on each other in the experiment. Due to the different distances to the
rod magnet, the magnetic force felt by someone holding the objects would be different.

These forces are:
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Fyp =mjpC forobject B 14 =M€ for object A

¢ )

Now assume that object A falls from frame A to frame B. The kinetic energy generated
by this fall is KE. To find KE, note that object A becomes an inertial reference frame as
soon as it starts to fall. Frame B accelerates towards object A with constant acceleration

J 8 . If the time interval that object A sees for the fall is 7 , then:
C - ; /2
Z:_—[(l*l‘(jBIA )2} —1]
B

T 1/ 2

; 2
Jets'= [1 +: @-) —1

: - (6)

The velocity that object A has relative to frame B at the moment of impact 1s P4 and :

L
/BA - ..]B .A =
\/] + (it (7)
The kinetic energy of object A as it impacts frame B 1s:
cC .
KE = —mc”’
J1-B;
: —1+ 78
-5 ¢
KE = mcZj (8)

Now lets assume object A does not fall from frame A. Instead, it is lowered by observer
B with a pole to frame B. Observer B does not know what force he will feel on his end of
the pole. He therefore assumes this force will vary with z and calls it F(z). The work

gained by observer B during this task will be Wap
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W = !F (z)dz -

W =12 (9b)

The value of F(z) would be applied for an incremental distance dz to give the expression
for work in (9a). Another way to calculate the work would be to take the average force as

the object was lowered through z,  ave , and multiply it by z, as 1s shown 1n (9b). But,

KE=W,

knowing B gIVes:

ave

F,,. =mcj, = I} (10)

Equation (10) is true no matter what the value of z is. For any value of z, observer B

s on his end of the pole. Therefore, observer B always feels

FBA

always feels average torce

I

constant force ,and

on his end of the pole at any z. This force will be called

Iy

exists any time object A exerts force * 4 on the opposite end of the pole.

F, = FA{j—B] — FA(I +E] - F,
J a4 C

(11)

Horizontal Force in a Magnetic Field
In Figure 4, observer B pushes on a long board with a hole in it so that it passes around

the rod magnet (plate magnet). The same board is part of an identical experiment on the

opposite side of the rod magnet (not shown), which is positioned to eliminate any

Fy

rotational movement or torque effects in the experiment. Horizontal force 1s applied

by observer B and horizontal force Fy is felt by observer A in frame A. The spring in
frame A is compressed, clamped in the compressed position and lowered to frame B by
observer B using a pole. The movement of the board in the x-direction 1s assumed to be

measured equally by frame A and frame B.

X 4 = Xp (12)

When the board compresses the spring, a potential energy F is stored in the spring while
in frame A. When the spring has been moved to frame B, the same energy and spring
force must be present there. However, the work gained by lowering the spring down to
frame B is zero. Energy (including light) is not affected by magnetic fields.

W =0 (13)
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I

—F dx
The energy initially expended by observer B on the board is 2 " and the energy
E =L Fdx

stored in the spring is 2 . When the spring is at frame B, the Law of
Conservation of Energy gives:

1 1

—Fpdx=E+W , =—F,dx+0

2 2

F A = F B (1 4)
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Figure 4. Horizontal force experiment.

The transformation (14) is a different result than was derived for gravitational fields.
Magnets are selective in the objects that they influence. Gravity is not selective. The link
between gravity and dynamic acceleration is perfect. Magnetism has only a partial
similarity to dynamic or gravitational acceleration.

Time in 2 Magnetic Field
The transformation for time flow rates at different magnetic potentials is found from the

experiment shown in Figure 5, where a board once again moves horizontally over the rod

magnet. However, this time the frame B observer applies a force Fs to the board and
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simultaneously to a second mass in frame B going in the opposite direction. The mass in
frame A will acquire a velocity to the right and the mass in frame B will acquired a
velocity to the left. Both of these masses will be assumed to have magnetic charges that
are attracted to the rod magnet (plate magnet). The experiment starts with all clocks

reading zero and the total system momentum being zero.

FA%"' m A ‘]:T "-..
_}x
L
Z

B O B

B [m[~ 1 P

Rod Magnet

Board <

Figure 5. Time experiment.

Observer B applies the forces until clock reading ‘s and the frame A observer sees the

force at his location applied until clock reading ‘4. The momentum produced in frame B
must be equal in magnitude (and opposite in direction) to the momentum produced in

frame A.

FAfA ZFBIB

[ 4 ! B (1 5)
The Law of Conservation of Momentum links the force transformation in an acceleration
to the time transformation. Therefore, the time transformation (15) is not the same as that

for other dynamic or gravitational accelerations.

Verification of Time and Force Transformations
Transformations (14) and (15) are unique when compared to other accelerations. Will
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this inconsistency present problems (gravitational and dynamic accelerations have already
been evaluated)? The Law of Conservation of Momentum will be calculated for the
experiment of Figure 5 as a check on the validity of these new transformations. After the
force application stops and the masses are both traveling with a constant velocity, the
frame A mass (charge) will be placed in a box and the box will be “dropped” to frame B.
See Figure 6.
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Figure 6. Law of Conservation of Momentum experiment.

At the instant that the box was “dropped” from frame A, it becomes an inertial reference

frame and frame B accelerates up to it with constant acceleration JB . At the instant
shown in Figure 6, the two masses are at the same vertical coordinate (frame B). The box

has no x-direction velocity and mass m is still traveling at its original velocity Ba

Frame B has accelerated to velocity A" . From the reference frame of the box, the
momentum of the mass inside the box 1s:

Vi-£ (16)

The velocity of the mass in frame B must now be calculated relative to the box. This will
be done using (14) from the article 2 Dim. Position, Velocity, Acceleration from the series
of articles on Force and Space-Time. The reference frame labels in that article are
backwards from the labels used in Figure 6, so care must be taken to keep track of the
terms in this calculation. Quantities of Figure 6 will be shown in square parentheses and
quantities of (14) will be shown without parentheses.

Py = [0] By = LB *] Pr = LB J Accelerating frame B velocities
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Py = [— )6"3] Py = [0] Velocities of mass in frame B
KS=1—\/]—[)8*]2 KTA:\h_LB*]Q
B ys :[/B'BNI_[IB*]Q Dz =LB*1 (17)

The velocity components of the accelerating frame B mass relative to the inertial box
reference frame are £x» and P as shown in (17). The x-direction momentum of the

Pyy

frame B mass relative to the inertial box reference frame is and:

_ me 3 _ mc[ﬁ'ﬂ}}h_{?*]z_
M-85 -85 N-pz -] (18)

Pﬂi

From (14) and (15), it is already known that Ps=Fs Plugging this mnto (18) gives:
PA = PXB (19)

In other words, the transformations (4), (5), (11), (12), (14) and (15) are compatible with
the Law of Conservation of Momentum, even though some of these transformations differ
significantly from those in the discussion surrounding Figure 15 in the article
Acceleration Dynamics. Although the box sees the relativistic mass of the magnet in
frame B as being greater than the relativistic mass of the magnet within the box, the
slower time flow rate observed for frame B exactly compensates for the increase in mass
as far as the Law of Conservation of Momentum is concerned.

Summary
A Dynamically Equivalent Orthogonal Magnetic Field can be constructed for magnetic

fields in the same way as a DEOGF was done for a gravitational fields. Distance and
field-aligned force transformations are identical to those for a gravitational field or a
dynamic acceleration, but time and perpendicular-to-field force transformations are not.
These relativistic differences between gravity and magnetism are caused by the absence
of a magnetic effect on energy.
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