Gravity and Energy 1

The equations presented in the article Circular Gravitational Fields are first order approximate
transformations of quantities within circular gravitational fields. Exact transformations can be
derived, but first it will be necessary to examine the effect of gravity on energy. Consider a
simple experiment where a mass m is moved from frame A to frame B within a gravitational
field. The work received from this change in position is Wz. In frame B, some of the material
of mass m could be converted into heat energy E (using nuclear fission) and held inside of mass
m with insulation. Then, as a separate activity, energy E is extracted from mass m and combined
with Was. The total energy received from the experiment would be Was + E.

Now the experiment is repeated, but this time the identical material conversion to heat energy E
is made in frame A. This energy is again kept inside of mass m. Mass m is now moved from
frame A to frame B. In frame B, the energy E is extracted from mass m and combined with the
energy obtained by the movement from frame A to frame B. This energy received by the
movement from frame A to frame B must also be Wz, giving a total energy of Was + E once
again. Any other result would violate the Law of Conservation of Energy. The two experiments
have beginning and end states that are the same, so the total energy received from the two
experiments must be the same. Therefore the force of gravity on energy E must be the same as
the force of gravity on the material mass that was converted into energy E.

The effect of gravity on energy will be used in the following experiment. Figure 8 shows a small
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Gravity and Energy 2

mass m as it is traveling between frame A and B in a gravitational field. The trip is made using a
gear and rack, with a motor/generator. Each motor/generator withdraws or adds energy to a
battery within it. There are two options for this experiment. One option is to keep the motor
Jocated on mass m stopped and to raise and lower m using the motor attached to frame B. Frame
B is also mass M producing the gravitational field. The second option is to stop the motor on
frame B and raise and lower mass m using the motor that is part of that mass.

First, the option where the mass is raised and lowered by the motor attached to frame B will be
examined. This is the “pole work” calculated in the articles Special Relativity and Gravity and
- Circular Gravitational Fields.

'CYLINDRICAL GRAVITATIONAL FIELDS - POLE WORK

The pole work for a cylindrical gravitational field (also equivalent to a DEOGF) will now be
calculated in a new way. Refer to the cylindrically shaped field surrounding the pole mass that
generates the DEOGF in the x-Q plane shown in the article Special Relativity and Gravity,
Figure 1 and Figure 2. This cylindrical gravitational field would exist in a plane perpendicular
to the x-axis of the pole. Figure 9 shows the experiment in more detail.

Figure 9

The pole work is calculated assuming the mass starts in frame B. According to (4) from Special
Relativity and Gravity, the weight of mass m in the two reference frames shown is:
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Gravity and Energy 3

An estimate of the pole work on mass m at some position r has been provided by (12).

Was = Falr—ra) = (282) ¢ —rp) = 2= 1) 28)

From (18) with E = mc?, the force applied by observer B to the bottom of the pole is Fp4. The
observer lifts m very slowly. Using (28), the exact calculation of the pole work W5 is:

(2Gm5)(1 (f” Ddr

W = |7 (2900 )y = 29 2Gmo (. _yp)= 3L 29)

Because of the form of acceleration defined by (4), the derivation (29) reduces to W3 = FpL,
which is also the deduction (12) from the article Special Relativity and Gravity. The pole work
calculates as expected using this new procedure, so nothing appears to be out of place. But the
form of the gravitational field described by (4) and (29) is a special case, as will become evident
when the same procedure is used for spherical gravitational fields.

SPHERICAL GRAVITATIONAL FIELDS - POLE WORK

Assume that the pole mass of Figure 9 is now a spherical planet of mass M. The weight of mass
m in the two reference frames shown is:

Fq=SmM Fp=GmM (30)
T4 r3

Now an expression for Fpsmust be deduced. The assumption for the spherical gravitational field
is that it follows the same form as the other gravitational fields and dynamic accelerations.

Faa _FA(l + L) 31)

Using this definition and the approximate Was (19), the calculation similar to (29) is repeated.
O P (P (G )
W= 1 ()1 + ()5 - )
Wi =Gmif+ B3 + 37)]

Was = GmM( 7= - 7) + G%z m(L_LYy (32)
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Gravity and Energy . 4

In (32), the calculation of Wz did not give the expected results. Equation (19) is not exactly
correct for a spherical field. When dealing with a cylindrical field or a DEOGF, Wag is a linear
function of the displacement within the field. But in the case of a spherical field, the linear
function is only an approximation. So, (32) is a better approximation of Wxs. Because of this,
the process of (32) can be repeated using the new expression of Wag,

Wap = fFBAdZ j Fr(lJ“(GM)( 2(GM)( 7 )

GmM( ) GM*m( 1 ﬁ) GMm L)3

T 2¢2 \rs T 6t I”B r4
(33)

In (33), Was is again made more precise than (32). In fact, a pattern is emerging in this
calculation. If the calculation process is repeated indefinitely, then:

_GM L_L)
- c2 18] ¥4
Was _ x2 | x3
1 m02_1+x+2+6"
174
1+mg§:ex (34)

Equation (34) is the most precise calculation of Was. It takes into account the nonlinear way that
potential energy is accumulated due to a change in position in a gravitational field using Special
Relativity. To state this another way, the ratio of forces at the ends of a pole represented by (31)
should be corrected to:

Fpy = Fyexp(x) ” (35)
In (31) or (35), the force on the end of the pole Fga is not only supporting the weight of mass m at

the top of the pole (Fa), but is also supporting the weight of the potential energy needed to move
mass m from frame B to frame A. Wyg is that potential energy. But the weight of that potential

‘energy has it own potential energy that must be lifted to frame A. That additional potential

energy shows up in (32). And that potential energy addition has its own potential energy that

must be lifted to frame A. That additional potential energy is shown in (33), and so on. The
weight of mass m at any particular point within the gravitational field is given by (30), but when
that mass changes position within the field, the relative force difference is given by (35).

Using (35) the calculation of W g will be done again.

Wayp = f F, expl| —GA-/[)( —% ]dr
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Wap = mg [exp{ el rlB %)}—1] (36),

With the new expressmn for Wap given by (3 4) the spherical gravitational field now calculates
s:e-x_ne”the same s1tuat10n as occurred in (29) Now for all three types of grav1tat10na1 ﬁeld the
pole work can be calculated directly, including the gravitational attraction on the mass of energy.
One assumption that should be recognized is that M is so big, it does not change with the
addition or deletion of mass W z/c?.

CYLINDRICAL GRAVITATIONAL FIELDS - MASS m WORK

At this.point, the second experiment of Figure 8 will be examined, where the energy from the
decent of mass m from frame A to frame B is stored within mass m. The motor attached to M is

‘stopped and has no energy input into the experiment. In this case, it will be assumed that the

mass of the potential energy Wp/c? is significant compared to mass m. The experiment will be
done this time by starting mass m at frame A and descending to frame B. As the mass descends
very slowly, the potential energy received by the motor (acting as-a.generator) progressively.
accumulates within mass m. At any radius r, the force on mass m is:

w.
=28 (s i) 37
From (12), W is deduced to be:
2
Wiz = Frra—1) = (2P s - 1) = (g —1) (38)

And the hew calculation of Wapis:
Was=1" (260 (14 (1)rg=1)ar
W= 7 (29881 4 (2475

Wi = j,rj (2Gmc5 )d = ZGm5 (ra—rp)=FgL (39)

Once again, the unique properties of this type of gravitational field give the expected result,

‘SPHERICAL GRAVITATIONAL FIELDS - MASS m WORK

Repeating the second experiment of Figure 8 for spherical gravitational fields, at any position r
within the field the weight-of massm is given by:
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F =S (40)
As a first approximation, W is:
Wip = GMin(E — 7). (41)

However, at position r, this potential energy that is added to m changes the force to:

) “2)

Therefore, the calculation of Wz becomes:

Was =1 (S 1+ ()3 - 75 Jar

s = Gmi( A - A)+ EMm(L LY a3

202 ¥4

Equation (43) is the same as (32). This new equation for Wp can be substituted into (42) to get
a new value of F; and an equation equal to (33) will result. Following the same logic as applied
to get (34), the final expression for Wz for a mass descending from frame A and storing the
potential energy gain within itself is (34). For either experiment described for Figure 8, the same
expression for Wag results.

Due to the Law of Conservation of Energy, this work Wap that is contained within mass m must
be the same as the energy gained when the mass falls from frame A to frame B. Whether the
energy obtained is electrical energy stored within a battery or kinetic energy acquired during free
fall, the two energies must be equal. That same amount of energy niust be required to raise miass.
m back to reference frame A, whether this task is done by pole work from frame B or whether the
battery in mass m is given an electrical charge of Wp and mass m pulls itself back to reference
frame A.

This also means that a more exact versions of the relative quantities (21), (22) and (23) from the
article Circular Gravitational Fields are:

£ = exp[ (- )] (44a)
Er=oa A7) B
it =e - 7)] ()

Notice in (44) that length coordinates have no transformation within the gravitational field. All
gravitational pole displacements are measured equally in all reference frames regardless of the
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type of field or direction of displacement. Length contraction is strictly an effect produced by
reference frames having a relative velocity.

A further demonstration of this is shown in Figure 10, where there are three observers at three
different vertical locations in a gravity field. The observers wish to know how measured vertical
distances at each location compare. In other words, as observer A displaces a pole up or down a
given distance, do the observers at the other locations see the same displacement? To find out,
observer A uses two identical poles as shown. It can be assumed in this experiment that the
‘poles have mass and weight. Obsetrver A moves one pole up slightly-and ohe down the saime
amount. Since the center of gravity of the two poles together does not move, there is no net
energy expended to accomplish the movement of both poles.

In the situation shown in Figure 10, the observers at B and C now apply clamps to the ends of the
two poles, so that the positions of the ends are fixed. The observer at A then rotates the poles
until they are horizontal in reference frame A. This rotation does not require any energy output
by observer A, as the center of gravity of the poles has not moved. In this horizontal position, the
‘observers are assured that Ly and L¢ are the same. If they were not the same, the identical poles
would now not be identical. They would be of differing lengths with a stress energy in the area
between the two clamped ends. This stress energy would be created by the experiment because
the observers have been careful to do an experiment that does not require any input of energy.
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Additional interesting points can be made about gravity fields and energy. In Figure 11, two
objects labeled C and D are attached to the ends of the shaft sections as shown. A field attraction
exists between C and D. This field could be gravitational, magnetic or electrostatic in nature. A
thotor/generator on one shaft moves mass C at a constant velocity, as shown. The friction collar
applies a force to the other shaft that exactly equals the attraction force between the masses,
allowing the shaft to be pulled through the collar at the same velocity as the motorized shaft. As
this shaft moves to the right, the distance r between the masses will stay constant. Energy
transfers from the motor (and battery) to the friction collar.

Energy is transferred through fields but there is no easily defined mechanism to do this. If C
were mechanically fastened to D, the energy transfer is conceptually easier to understand. But
Figure 11 shows.a transfer-of energy-across-an-empty space between C-and D. In other words,
the experiment of Figure 11 helps to conceptually define whether or not a “field” is a “thing”. It
doesn’t seem to have any of the usual properties of “things™ as we think of them in the
Newtonian world. It doesn’t have any “substance” that we can hold or observe. But energy
crosses it in predictable ways, whatever composition it has.

This leads to one more property of these things called fields: fields have mass. In order to
display this, again consider Figure 11. This time, the friction collar holds object D in a fixed
position. The motor is turned on and energy E is once again expended. This time object C is
moved away from object D and distance r is increased. Energy E has disappeared from the
‘battery and has beeh cotiveited into potential energy of the ficld:
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Figure 11

So, consider the entire mechanism of Figure 11 out in space away from other objects before
energy E is expended by the motor. Now a vertical force is applied to the bottom of the platform
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pushing the platform upwards. The entire mechanism will react to acceleration in a known way.
Newton's Law, F = ma, can be applied to the whole mechanism, including the mass of energy
stored in the motor’s battery. The total mass of the system will include all the masses of the
individual material parts, as well as the mass E/c>. Theequation of motion of the platform, with
energy E stored in the motor’s battery, obeys Newton’s Laws of motion and the Law of
Conservation of Momentum.

Now operate the motor and send energy E into the field between objects C and D by extending
distance . The mass ofthe battery is now-reduced by the Toss of this enhergy. The Vertical force
is once again applied to the bottom of the platform. In this case, the reaction of the platform with
potential energy E stored in the field must be the same as when energy E was in the motor’s
battery-(or heat in the friction-collar). The mechanism of Figure 11 is-an isolated system and.
must react to Newton’s Laws or the Law of Conservation of Momentum in exactly the same way
for any of these situations.

Energy E must have mass equivalent to E/c? whether this energy is stored in the battery, friction
collar or in the field. Since fields extend in all directions with unlimited dimensions, any
object’s field must contain potential energy mass which is the compilation of all the potential
energies of every object in the universe affected by that field.

Now repeat that last experiment in a gravitational field. As drawn in Figure 11, imagine a device
‘sﬂppértS‘the'platféfm froin the bottoin, with a DEOGF pulling the platfotin downward. Before
energy E is expended by the motor, the platform including E has a weight. Now take energy E
from the battery, increase distance r and this energy is stored as potential energy in the field. The
weight-of the platform mechanism.as.a whole must be the same. If'itisnet the same, then the.
Law of Conservation of Energy can be broken.

To shown how to create energy with this experiment, first notice that the vertical gravitational
field will have no effect on the horizontal force between C and D. No matter where the platform
is'in-the vertical field, the force relationship between C and D is the same. So, the weight of the
platform pushes the device downward when energy E is stored in the battery. This downward
motion produces energy E’ which is stored in the device. Now expend energy E from the battery
and store it in the field between C and D. By assumption, the platform now weighs less. Take
some of energy E’ and use it to raise the platform back up to its original height. Then, the
potential energy E in the field is allowed to tun the motor backwards (acting as a genetator) dnd
puts energy E back into the platform battery. The experiment is now back to its original state but
the remainder of energy E’ stored in the device has been created. Since energy cannot be created,
the weight of E when stored as potential energy in the. gravity field between C-and D must be:the.
same as the weight of any other mass. The potential energy in gravitational fields has mass and
weight.

In summary, Relativity Theory recognizes that energy has mass and this makes the analysis of
simple gravitational experiments more complicated. The more exact gravity transformations (44)
are the result. Since gravitational fields store potential energy, they have mass and weight like
any other energy storage device.
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